Add like
Add dislike
Add to saved papers

A Tunable Resonance Cantilever for Cardiac Energy Harvesting.

PURPOSE: Energy harvesting from cardiac motion is an attractive means to avoid the use of batteries in implantable sensors and pacemakers. A single implantable device would ideally integrate both sensing and self-powering functionality.

METHODS: This work describes a novel electromagnetic system that achieves high sensitivity detection of the heart rate while simultaneously providing adaptive energy harvesting capability using a tunable resonance cantilever mechanism.

RESULTS: Our prototype design exhibits tunability of resonant frequency across the range of physiologic heart rates at a combination of lengths and angular orientations. Our initial prototype also produces between 3.0 [Formula: see text]W and 20.6 [Formula: see text]W of power at heart rates of 79-243 bpm, respectively.

CONCLUSIONS: The prototype device can harvest sufficient energy to sustain implantable cardiac devices such as a leadless pacemaker. The system in this paper has the potential to eliminate batteries in certain implantable cardiac devices and thereby improve overall patient monitoring and treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app