Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

First biological conversion of chiral heterophosphonate derivative - Scaling and paths of conversion discussion.

Bioorganic Chemistry 2019 December
Presented work describes the first approach for the biocatalytic resolution of racemic mixtures of heterophosphonate derivative. Penicillium funiculosum and Rhodotorula mucilaginosa were successfully applied for the biological conversion of racemic mixture of 1-amino-1-(3'-pyridyl)methylphosphonic acid 3. Both microorganisms carried out the kinetically driven process leading to conversion of one from the substrate enantiomers, leaving the second one unreacted. Application of R. mucilaginosa allowed obtaining pure enantiomer of the substrate (yield 100%, e.e 100% - unreacted isomer) after 24 h of biotransformation of 3 in the laboratory scale process (Method E), applying biocatalyst pre-treatment step - 24 h of starvation. In case of other biocatalyst, application of whole cells of P. funiculosum in laboratory scale process, also resulted in conversion of the racemic mixture of substrate 3via oxidative deamination into ketone derivative, which was then bioreduced (second step of the process) into 1-hydroxy-1-(3'-pyridyl)methylphosphonic acid 4. This time two products were isolated: unreacted substrate and hydroxy compound 4. Conversion degree ranged from 30% (standard procedure, method A) to even 70% (with extra addition of sodium pyruvate - method B2). However, in this case, bioconversion was not enantioselective - products: amino- and hydroxyderivative were obtained as racemic mixtures. Both biocatalysts were also tested towards the scaling so other biocatalytic procedures were introduced - with immobilized fungal mycelium. In case of Rhodotorula mucilaginosa this approach failed (data not shown) but Penicillium funiculosum turned out to be active and also selective. Thus, application of this biocatalyst in the half-preparative scale, continuous-flow bioprocess (Method C2) resulted in the obtaining of pure S-3 (100% e.e.) isomer with the 100% of conversion degree, without any side products. Recorded NMR spectra allowed confirming the reaction progress and its selectivity and also postulating possible mechanism of conversion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app