Add like
Add dislike
Add to saved papers

Development of a three-stage gas gun launcher for ultrahigh-pressure Hugoniot measurements.

A three-stage gas gun, composed of a two-stage gas gun and the add-on part, has been developed to launch high-Z (tantalum, for example) flyer plates up to 10 km/s for ultrahigh-pressure Hugoniot measurements. Great care has been taken to optimize the add-on part in which a specially designed graded density impactor is employed to quasi-isentropically accelerate the high-Z flyer plate for maximizing its impact velocity. The shock wave in the target generated by the flyer plate is characterized with the flatness of the shock-front better than 1 ns in the concerned area and the uncertainty of the shock-wave velocity less than 2%, thus satisfying the requirements for high-precision Hugoniot measurements. As a demonstration, we measured the ultrahigh-pressure Hugoniot equation of state of tantalum ranging from 0.45 TPa to 0.85 TPa with a symmetric impacting geometry in which the shock-wave velocity and the particle velocity are simultaneously determined. The results obtained are well consistent with data available in the literature, indicating the extended capability of the gas-gun launcher technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app