Add like
Add dislike
Add to saved papers

Emergent dynamics in delayed attractive-repulsively coupled networks.

Chaos 2019 January
We investigate different emergent dynamics, namely, oscillation quenching and revival of oscillation, in a global network of identical oscillators coupled with diffusive (positive) delay coupling as it is perturbed by symmetry breaking localized repulsive delayed interaction. Starting from the oscillatory state (OS), we systematically identify three types of transition phenomena in the parameter space: (1) The system may reach inhomogeneous steady states from the homogeneous steady state sometimes called as the transition from amplitude death (AD) to oscillation death (OD) state, i.e., OS-AD-OD scenario, (2) Revival of oscillation (OS) from the AD state (OS-AD-OS), and (3) Emergence of the OD state from the oscillatory state (OS) without passing through AD, i.e., OS-OD. The dynamics of each node in the network is assumed to be governed either by the identical limit cycle Stuart-Landau system or by the chaotic Rössler system. Based on clustering behavior observed in the oscillatory network, we derive a reduced low-dimensional model of the large network. Using the reduced model, we investigate the effect of time delay on these transitions and demarcate OS, AD, and OD regimes in the parameter space. We also explore and characterize the bifurcation transitions present in both systems. The generic behavior of the low dimensional model and full network is found to match satisfactorily.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app