Add like
Add dislike
Add to saved papers

Synchronization transition in Sakaguchi-Kuramoto model on complex networks with partial degree-frequency correlation.

Chaos 2019 January
We investigate transition to synchronization in the Sakaguchi-Kuramoto (SK) model on complex networks analytically as well as numerically. Natural frequencies of a percentage (f) of higher degree nodes of the network are assumed to be correlated with their degrees and that of the remaining nodes are drawn from some standard distribution, namely, Lorentz distribution. The effects of variation of f and phase frustration parameter α on transition to synchronization are investigated in detail. Self-consistent equations involving critical coupling strength (λc ) and group angular velocity (Ωc ) at the onset of synchronization have been derived analytically in the thermodynamic limit. For the detailed investigation, we considered the SK model on scale-free (SF) as well as Erdős-Rényi (ER) networks. Interestingly, explosive synchronization (ES) has been observed in both networks for different ranges of values of α and f. For SF networks, as the value of f is set within 10%≤f≤70%, the range of the values of α for existence of the ES is greatly enhanced compared to the fully degree-frequency correlated case when scaling exponent γ<3. ES is also observed in SF networks with γ>3, which is never observed in fully degree-frequency correlated environment. On the other hand, for random networks, ES observed is in a narrow window of α when the value of f is taken within 30%≤f≤50%. In all the cases, critical coupling strengths for transition to synchronization computed from the analytically derived self-consistent equations show a very good agreement with the numerical results. Finally, we observe ES in the metabolic network of the roundworm Caenorhabditis elegans in partially degree-frequency correlated environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app