Add like
Add dislike
Add to saved papers

Performance of Nano-Silica Modified Self-Compacting Glass Mortar at Normal and Elevated Temperatures.

Materials 2019 January 32
This research aims to combine the effects of nanosilica and glass powder on the properties of self-compacting mortar at normal and at higher temperatures. The fine aggregate was replaced by waste glass powder at various percentage levels of 10%, 20%, 30%, 40% and 50%. The mechanical properties of self-compacting glass mortar (SGCM) were studied at elevated temperatures of 200, 400, 600 and 800 °C. Furthermore the effect of sudden and gradual cooling technique on the residual strength of glass mortar was also investigated In order to enhance the behavior of SCGM the nanosilica of 3% by weight of cement was added. From the results it was obtained that the glass powder replacement effectively contributed towards the thermal performance while the addition of nanosilica enhanced the mechanical performance. The enhanced physical properties were obtained mainly at the glass transition temperature thus showing the active participation of glass powders during high temperatures. Moreover the gradually cooled specimens exhibited improved strength characteristics than the suddenly cooled specimens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app