Add like
Add dislike
Add to saved papers

Petroleomic depth profiling of Staten Island salt marsh soil: 2ω detection FTICR MS offers a new solution for the analysis of environmental contaminants.

Staten Island is located in one of the most densely populated regions of the US: the New York/New Jersey Estuary. Marine and industrial oil spills are commonplace in the area, causing the waterways and adjacent marshes to become polluted with a range of petroleum-related contaminants. Using Rock-Eval pyrolysis, the hydrocarbon impact on a salt marsh was assessed at regular intervals down to 90 cm, with several key sampling depths of interest identified for further analysis. Ultrahigh resolution data are obtained by direct infusion (DI) atmospheric pressure photoionization (APPI) on a 12 T solariX Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) allowing trends in the compositional profile with depth to be observed, such as changes in the relative hydrocarbon intensity and the relative contributions from oxygen- and sulfur-containing groups. These trends may correlate with the timing of major oil spills and leaks of petroleum and other industrial chemicals into the waterways. The use of gas chromatography (GC) coupled to a 7 T solariX 2XR FTICR MS equipped with an atmospheric pressure chemical ionization (APCI) ion source offers retention time resolved and extensive compositional information for the complex environmental samples complementary to that obtained by DI-APPI. The compositional profile observed using GC-APCI FTICR MS includes contributions from phosphorous-containing groups, which may be indicative of contamination from other anthropogenic sources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app