Add like
Add dislike
Add to saved papers

Loss of primary cilia drives switching from Hedgehog to Ras/MAPK pathway in resistant basal cell carcinoma.

Basal cell carcinomas (BCCs) rely on Hedgehog (HH) pathway growth signal amplification by the microtubule-based organelle, the primary cilium. Despite naïve tumors responsiveness to Smoothened inhibitors (Smoi ), resistance in advanced tumors remains frequent. While the resistant BCCs usually maintain HH pathway activation, squamous cell carcinomas with Ras/MAPK pathway activation also arise, with the molecular basis of tumor type and pathway selection still obscure. Here we identify the primary cilium as a critical determinant controlling tumor pathway switching. Strikingly, Smoi -resistant BCCs possess an increased mutational load in ciliome genes, resulting in reduced primary cilia and HH pathway activation compared to naive or Gorlin patient BCCs. Gene set enrichment analysis of resistant BCCs with a low HH pathway signature reveals increased Ras/MAPK pathway activation. Tissue analysis confirms an inverse relationship between primary cilia presence and Ras/MAPK activation, and primary cilia removal in BCCs potentiates Ras/MAPK pathway activation. Moreover, activating Ras in HH-responsive cell lines confers resistance to both canonical (vismodegib) and non-canonical (aPKC and MRTF inhibitors) HH pathway inhibitors, while conferring sensitivity to MAPK inhibitors. Our results provide insights into BCC treatment and identify the primary cilium as an important lineage gatekeeper, preventing HH to Ras/MAPK pathway switching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app