Add like
Add dislike
Add to saved papers

Solid phase microextraction of polycyclic aromatic hydrocarbons by using an etched stainless-steel fiber coated with a covalent organic framework.

Mikrochimica Acta 2019 Februrary 2
A new covalent organic framework (COF) was synthesized by the amide coupling between 1,3,5-tris(4-aminophenyl)benzene and trimesoyl chloride at room temperature. The COF was applied as a steel fiber coating for the solid phase microextraction of polycyclic aromatic hydrocarbons (PAHs) from water samples. The effect of extraction time, salt concentration, and extraction temperature on the efficiency of SPME was optimized by a Box-Behnken design. The PAHs were quantified by gas chromatography with mass spectrometric detection. Figures of merit include (a) a wide linear range (typically from 0.2 ng L-1 to 2 μg L-1 ), (b) low limits of detection (0.29 to 0.94 ng L-1 at S/N = 3), and (c) high enrichment factors (EFs; 819-2420). Density functional theory was employed to study the interaction between the COF cluster and the PAHs. The results demonstrated that the EFs increase with the enhancement of π stacking interaction. The repeatability (one fiber; n = 5) and reproducibility (fiber to fiber; n = 5), expressed as the relative standard deviations were in the range of 4.3%-8.4% and 8.5-11.0%, respectively. The recoveries of the PAHs from water samples spiked at levels of 20.0 and 100 ng L-1 ranged from 79.0% to 105.0%. Graphical abstract A covalent organic framework prepared from 1,3,5-tris(4-aminophenyl)benzene and trimesoyl chloride (TAPB-TMC-COF) was synthesized and employed as solid phase microextraction (SPME) fiber coating for the extraction of polycyclic aromatic hydrocarbons from water samples prior to gas chromatography (GC) - mass spectrometric (MS) detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app