Journal Article
Review
Add like
Add dislike
Add to saved papers

Shaping up field-deployable nucleic acid testing using microfluidic paper-based analytical devices.

Rapid, low-cost, and sensitive nucleic acid detection and quantification assays enabled by microfluidic paper-based analytical devices (μPADs) hold great promise for point-of-care disease diagnostics and field-based molecular tests. Through the capillary action in μPAD, flexible manipulation of nucleic acid samples can be achieved without the need for external pumps or power supplies, making it possible to fabricate highly integrated sample-to-answer devices that streamline the nucleic acid extraction, separation, concentration, amplification, and detection. To detect minute amounts of genetic materials from clinical and biological samples, it is also critical to develop sensitive signal readouts that generate physically detectable signals for in-device nucleic acid detection and/or quantification. In this review, we will focus on μPAD approaches for the facile manipulation of nucleic acids and emerging signal transduction strategies allowing sensitive and specific nucleic acid detection in μPAD. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app