Add like
Add dislike
Add to saved papers

Progress of small ubiquitin-related modifiers in kidney diseases.

Chinese Medical Journal 2019 January 31
OBJECTIVE: Small ubiquitin-related modifiers (SUMOs) are a group of post-translational modification proteins extensively expressed in eukaryotes. Abnormal SUMOylation can lead to the development of various diseases. This article summarizes the progress on research of the role of SUMOs in various types of kidney diseases to further increase the understanding of the regulatory functions of SUMOylation in the pathogenesis of kidney diseases.

DATA SOURCES: This review was based on articles published in the PubMed databases up to January 2018, using the keywords including "SUMOs," "SUMOylation," and "kidney diseases."

STUDY SELECTION: Original articles and critical reviews about SUMOs and kidney disease were selected for this review. A total of 50 studies were in English.

RESULTS: SUMO participates in the activation of NF-κB inflammatory signaling pathway, playing a central regulatory role in the inflammation and progression of DN, and the secretion of various chemokines in AKI. SUMO involves in the regulation of TG2 and Nrf2 antioxidant stress, affecting renal tubular injury in AKI. SUMO affects the MAPK/ERK pathway, regulating intracellular signal transduction, modulating the transcription and expression of effector molecules in DN. SUMO contributes to the TGF-β/Smad pathway, leading to fibrosis of the kidney. The conjugate combination of SUMO and p53 regulates cell proliferation and apoptosis, and participates in the regulation of tumorigenesis. In addition, SUMOylation of MITF modulates renal tumors secondary to melanoma, Similarly, SUMOylation of tumor suppressor gene VHL regulates the occurrence of renal cell carcinoma in VHL syndrome.

CONCLUSIONS: Tissue injury, inflammatory responses, fibrosis, apoptosis, and tumor proliferation in kidney diseases all involve SUMOs. Further research of the substrate SUMOylation and regulatory mechanisms of SUMO in kidney diseases will improve and develop new treatment measures and strategies targeting kidney diseases.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. https://creativecommons.org/licenses/by-nc-nd/4.0.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app