Add like
Add dislike
Add to saved papers

In Silico Computations of Selective Phytochemicals as Potential Inhibitors Against Major Biological Targets of Diabetes Mellitus.

BACKGROUND: In the past few years, several developments have been made to understand and control the complications and harmful side-effects associated with the disorder diabetes mellitus (DM). Many new steps have been taken in a better understanding of the pathophysiology of the disease. With the advancement in the field of medical sciences, various novel therapies have been developed to efficiently control the pathological effects of diabetes mellitus. Recently, phytochemicals possessing various medicinal properties have opened up a new vast range of opportunities to design novel therapeutic drugs against diabetes mellitus.

OBJECTIVE: The present study aims to identify and screen phytochemicals as potent and novel inhibitors against diabetes mellitus.

METHODS: Three major biological targets of diabetes mellitus named Cytochrome P450, glycogen synthase kinase and PPARγ are targeted using phytochemicals by performing pharmacological properties prediction, molecular docking and density functional theory studies.

RESULTS: Out of 108 phytochemicals, 20, 12 and 3 phytochemicals showed higher binding affinity values as compared to chemically synthesized drugs against cytochrome P450, glycogen synthase kinase and PPARγ, respectively.

CONCLUSION: The screened phytochemicals have strong inhibitory potential against diabetes mellitus and in future, these compounds, holding immense potential, can be considered as candidate drugs for treating diabetes mellitus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app