JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metabolomic and Immunological Profiling of Respiratory Syncytial Virus Infection after Intranasal Immunization with a Subunit Vaccine Candidate.

Respiratory syncytial virus (RSV) is a significant cause of mortality and morbidity in infants, the elderly, immunocompromised individuals, and patients with congenital heart diseases. Despite extensive efforts, a vaccine against RSV is still not available. We have previously reported the development of a subunit vaccine (ΔF/TriAdj) composed of a truncated version of the fusion protein (ΔF) and a polymer-based combination adjuvant (TriAdj). We compared inflammatory responses of ΔF/TriAdj-vaccinated and unvaccinated mice following intranasal challenge with RSV. Rapid and early inflammatory responses were observed in lung samples from both groups but modulated in the vaccinated group 7 days after the viral challenge. The underlying mechanism of action of ΔF/TriAdj was further studied through LC-MS-based metabolomic profiling by using 12 C- or 13 C-dansyl labeling for the amine/phenol submetabolome. RSV infection predominantly affected the amino acid biosynthesis pathways and urea cycle, whereas ΔF/TriAdj modulated the concentrations of almost all of the altered metabolites. Tryptophan metabolites were significantly affected, including indole, l-kynurenine, xanthurenic acid, serotonin, 5-hydroxyindoleacetic acid, and 6-hydroxymelatonin. The results from the present study provide further mechanistic insights into the mode of action of this RSV vaccine candidate and have important implications in the design of metabolic therapeutic interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app