Add like
Add dislike
Add to saved papers

Targeting XIAP and PPARγ in granulosa cell tumors alters metabolic signaling.

Ovarian granulosa cell tumors (GCT) are hormonally-active cancers characterized by indolent growth and late, invasive relapse. No therapies have yet proven to be efficacious. We previously reported that inhibition of the anti-apoptotic X-linked inhibitor of apoptosis protein (XIAP) removes transrepression of the pro-proliferative nuclear receptor, peroxisome proliferator-activated receptor (PPAR)-γ, in a GCT-derived cell line, KGN. Both PPARγ and XIAP are overexpressed in human GCT. Inhibition of XIAP with restoration of PPARγ signaling using a SMAC-mimetic (Compound A; CmpdA) and rosiglitazone (RGZ)/retinoic acid (RA), respectively, reduced cell proliferation and induced apoptosis in the KGN cells. Utilizing stable isotope labeling with amino acids in cell culture (SILAC), we identified 32 differentially expressed proteins in the KGN cells following the CmpdA/RGZ/RA-treatment; 22 of which were upregulated by ≥1.5 fold. Of these, stearoyl-CoA desaturase (SCD; 4.5-fold induction) was examined for putative binding sites for PPARγ using in silico screening. Chromatin immunoprecipitation confirmed the direct binding of PPARγ on the promoter region of SCD, with increased binding in the CmpdA/RGZ/RA-treated KGN cells. As PPARγ plays a pivotal role in lipid and glucose metabolism, upregulation of proteins associated with metabolic processes such as SCD is consistent with the restoration of PPARγ activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app