Add like
Add dislike
Add to saved papers

Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes.

The aim of this study was to know the biodiversity of total microorganisms contained in two polychlorinated biphenyl-contaminated aged soils and evaluate the strategies of bioaugmentation and biostimulation to biodegrade the biphenyls. Besides, the aerobic cultivable microorganisms were isolated and their capacity to biodegrade a commercial mixture of six congeners of biphenyls was evaluated. Biodiversity of contaminated soils was dominated by Actinobacteria (42.79%) and Firmicutes (42.32%) phyla, and others in smaller proportions such as Proteobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes. At the genus level, the majority of the population did not exceed 7% of relative abundance, including Bacillus, Achromobacter, Clostridium, and Pontibacter. Furthermore, four autochthonous bacterial cultures were possible isolates from the soils, which were identified by partial sequencing of the 16S rRNA gene, as Bacillus sp., Achromobacter sp., Pseudomonas stutzeri, and Bacillus subtilis, which were used for the bioaugmentation process. The bioaugmentation and biostimulation strategies achieved a biodegradation of about 60% of both soils after 8 weeks of the process; also, the four isolates were used as mixed culture to biodegrade a commercial mix of six polychlorinated biphenyl congeners; after 4 weeks of incubation, the concentration decreased from 0.5 mg/L to 0.23 mg/L.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app