Add like
Add dislike
Add to saved papers

Regional differences in the expression of tetrodotoxin-sensitive inward Ca 2+ and outward Cs + /K + currents in mouse and human ventricles.

Channels 2019 December
Tetrodotoxin (TTX) sensitive inward Ca2+ currents, ICa(TTX) , have been identified in cardiac myocytes from several species, although it is unclear if ICa(TTX) is expressed in all cardiac cell types, and if ICa(TTX) reflects Ca2+ entry through the main, Nav1.5-encoded, cardiac Na+ (Nav) channels. To address these questions, recordings were obtained with 2 mm Ca2+ and 0 mm Na+ in the bath and 120 mm Cs+ in the pipettes from myocytes isolated from adult mouse interventricular septum (IVS), left ventricular (LV) endocardium, apex, and epicardium and from human LV endocardium and epicardium. On membrane depolarizations from a holding potential of -100 mV, ICa(TTX) was identified in mouse IVS and LV endocardial myocytes and in human LV endocardial myocytes, whereas only TTX-sensitive outward Cs+ /K+ currents were observed in mouse LV apex and epicardial myocytes and human LV epicardial myocytes. The inward Ca2+ , but not the outward Cs+ /K+ , currents were blocked by mm concentrations of MTSEA, a selective blocker of cardiac Nav1.5-encoded Na+ channels. In addition, in Nav1.5-expressing tsA-201 cells, ICa(TTX) was observed in 3 (of 20) cells, and TTX-sensitive outward Cs+ /K+ currents were observed in the other (17) cells. The time- and voltage-dependent properties of the TTX-sensitive inward Ca2+ and outward Cs+ /K+ currents recorded in Nav1.5-expressing tsA-201 were indistinguishable from native currents in mouse and human cardiac myocytes. Overall, the results presented here suggest marked regional, cell type-specific, differences in the relative ion selectivity, and likely the molecular architecture, of native SCN5A-/Scn5a- (Nav1.5-) encoded cardiac Na+ channels in mouse and human ventricles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app