Add like
Add dislike
Add to saved papers

The interplay between transport and metabolism in fungal itaconic acid production.

Besides enzymatic conversions, many eukaryotic metabolic pathways also involve transport proteins that shuttle molecules between subcellular compartments, or into the extracellular space. Fungal itaconate production involves two such transport steps, involving an itaconate transport protein (Itp), and a mitochondrial tricarboxylate transporter (Mtt). The filamentous ascomycete Aspergillus terreus and the unicellular basidiomycete Ustilago maydis both produce itaconate, but do so via very different molecular pathways, and under very different cultivation conditions. In contrast, the transport proteins of these two strains are assumed to have a similar function. This study aims to investigate the roles of both the extracellular and mitochondrial transporters from these two organisms by expressing them in the corresponding U. maydis knockouts and monitoring the extracellular product concentrations. Both transporters from A. terreus complemented their corresponding U. maydis knockouts in mediating itaconate production. Surprisingly, complementation with Mtt of A. terreus (At_MfsA) led to a partial switch from itaconate to (S)-2-hydroxyparaconate secretion. Apparently, the export protein from A. terreus has a higher affinity for (S)-2-hydroxyparaconate than for itaconate, even though this species is classically regarded as an itaconate producer. Complementation with At_MttA increased itaconate production by 2.3-fold compared to complementation with Um-Mtt1, indicating that the mitochondrial carrier from A. terreus supports a higher metabolic flux of itaconic acid precursors than its U. maydis counterpart. The biochemical implications of these differences are discussed in the context of the biotechnological application in U. maydis and A. terreus for the production of itaconate and (S)-2-hydroxyparaconate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app