Add like
Add dislike
Add to saved papers

Raman spectral signatures of urinary extracellular vesicles from diabetic patients and hyperglycemic endothelial cells as potential biomarkers in diabetes.

Raman spectroscopy was applied to the measurement of urinary and in vitro endothelium-derived extracellular vesicles (EVs) isolated by hydrostatic filtration dialysis (HFD) method. Raman spectra obtained for urinary EVs (UEVs) showed distinct differences in the fingerprint region. In contrast, average Raman spectra of endothelium-derived EVs samples were almost identical. Cluster Analysis of UEVs significantly discriminated diabetic samples from control, moreover endothelium-derived EVs revealed stronger similarity between long hyperglycemia and normoglycemia samples compared to short hyperglycemia. Results obtained from Partial Least Squares analysis corresponded well with integral intensities of selected bands. Our proof-of-concept approach demonstrates the potential for Raman spectroscopy to be used both for identification of EVs molecular signatures in urine samples from patients with type 2 diabetes mellitus and good glycemic control and unsatisfactory glycemic control as well as for in vitro hyperglycemic model. This non-invasive technique may be useful in identifying new biomarkers of diabetes and renal complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app