Add like
Add dislike
Add to saved papers

Combining SWNT and Graphene in Polymer Nanofibers: A Route to Unique Carbon Precursors for Electrochemical Capacitor Electrodes.

It is important to fabricate nanostructured architectures comprised of functional components for a wide variety of applications because precise structural control in the nanometer regime can yield unprecedented, fascinating properties. Owing to their well-defined microstructural characteristics, it has been popular to use carbon nanospecies, such as nanotubes and graphene, in fabricating nanocomposites and nanohybrids. Nevertheless, it still remains hard to control and manipulate nanospecies for specific applications, thus preventing their commercialization. Herein, first, we report unique one-dimensional nanoarchitectures with meso/macropores consisting of single-walled nanotubes (SWNTs), graphene, and polyacrylonitrile, in which polyvinyl alcohol was employed as a dispersing agent and sacrificial porogen. One-dimensional SWNTs and two-dimensional graphene pieces were combined in the confined interior space of electrospun nanofibers, which led to unique microstructural characteristics such as enhanced ordering of SWNTs, graphene pieces, and polymer chains in the nanofiber interior. Next, the SWNT/graphene-in-polymer nanofiber (SGPNF) structures were converted into carbonized products (SGCNFs) with effective porosity and tunable electrochemical properties. Similar to SGPNFs, the microstructural and electrical properties of the SGCNFs depended on the incorporated amount of SWNT and graphene. At higher SWNT content, the mesopore volume proportion and specific discharge capacitance of the SGCNFs increased by max. 63% and 598%, respectively. The SGCNFs demonstrated strong potential as high-performance electrode material for electrochemical capacitors (max. capacitance: nonactivated ~390 F g-1 and activated ~750 F g-1 ). Flexible, all solid-state capacitor cells based on the SGCNFs were also successfully demonstrated as a model application. The SGCNFs can be further functionalized by various methods, which will impart attractive properties for extended applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app