Add like
Add dislike
Add to saved papers

A 400 GΩ Input-Impedance Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition With Large Linear-Input-Range and High CM-Interference-Tolerance.

Electrocardiogram (ECG) is one of the major physiological vital signs and an effective monitoring method for patients with cardiovascular diseases. However, existing ECG recordings require a galvanic body contact, which is unpractical in daily life. This paper presents the design of an ECG chip that facilitates non-contact ECG recording through capacitive coupling. With the input impedance boosting techniques, as well as an active driven-right-leg (DRL) which boosts common-mode rejection ratio to 70 dB, the single-ended capacitive feedback active electrode (AE) achieves ultra-high input impedance of 400 GΩ (< 0.5 Hz), a large common-mode interference tolerance (2.8 VPP ), and a high linear-input-range (220 m VPP ). Implemented in 0.18 μm 5V CMOS process, the prototype occupies an area of 1.23 mm2 , and consumes 18 μA and 13 μA for the AE and DRL, respectively. Real life non-contact capacitively coupled ECG acquisition has been demonstrated, obtaining ECG waves and heart rate in the presence of motion artifacts as well as ambient interference.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app