EVALUATION STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Evaluation of the Elekta Agility MLC performance using high-resolution log files.

Medical Physics 2019 March
PURPOSE: With the advent of volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques, the requirement for more elaborate approaches in reviewing linac components' integrity has become even more stringent. A possible solution to this challenge is to employ the usage of log files generated during treatment. The log files generated by the new generation of Elekta linacs record events at a higher frequency (25 Hz) than their predecessors, which allows for retrospective analysis and identification of subtle changes and provides another means of quality assurance. The ability to track machine components based on log files for each treatment can allow for constant monitoring of fraction consistency in addition to machine reliability. Using Elekta Agility log files, a set of tests were developed to evaluate the reliability and robustness of the multileaf collimators (MLCs).

METHODS: To evaluate Elekta log file utilization for linac MLC QA effectiveness, five MLC test patterns were constructed to review the effects of leaf velocity and acceleration on positional accuracy, including gravitational effects for the Elekta MLC system. Each test was run five times in a particular setting to obtain reproducibility data and statistical averages. This study was performed on two identical Versa HD machines, each delivering a full set of test plans with all possible variations. Plans were delivered using Elekta's iCOMcat software and recorded log files were extracted. Log files were reformatted for readability and automatically analyzed in Matlab® .

RESULTS: The Elekta Agility MLC system was shown to be capable of obtaining speeds within the range of 5-35 mm/s. MLC step and shoot tests have demonstrated the MLC system's capability of having positional repeatability, averaging 0.03- and 0.08-mm offsets with and without gravitational effects, respectively. The IMRT-specific tests have shown that gravitational effects are negligible with all positional tests averaging 0.5-mm offsets. The largest speed root-mean-square error (RMSE) for the MLC system was found at the maximum speed of 35 mm/s with an average error of 0.8 mm. For slower speeds, the value was found to be much lower.

CONCLUSION: Utilizing log files has demonstrated the feasibility for higher precision of MLC motions to be reviewed, based on the performance tests that were instituted. Log files provide insight on the effects of friction, acceleration, and gravity, with MU's delivered that previously could not be reviewed in such detail. Based on our results, log file-based QA has enhanced our ability to review performance, functionality, and perform QA on Elekta's MLC system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app