Add like
Add dislike
Add to saved papers

Complex ATP7B mutation patterns in Wilson disease and evaluation of a yeast model for functional analysis of variants.

Human Mutation 2019 January 32
Wilson disease (WD) is a rare autosomal recessive genetic disorder that is associated with various mutations in the ATP7B gene. Although ATP7B variants are frequently identified, the exact mutation patterns remain unknown because of the absence of pedigree studies, and the functional consequences of individual ATP7B variants remain to be clarified. Here, we recruited 65 clinically diagnosed WD patients from 60 unrelated families. Pedigree analysis showed that besides several ATP7B homozygous variants (8/65, 12.3%), compound heterozygous variants (43/65, 66.2%) were present in the majority of WD patients. More than 20% of the patients had one (13/65, 20.0%) or multiple (1/65, 1.5%) variants in only a single allele, characterized by a high ratio of splicing or frameshift variants. Nine ATP7B variants were cloned into the pAG426GPD yeast expression vector to evaluate their functional consequences, and the results suggested different degrees of functional disruption from mild or uncertain to severe, consistent with the corresponding phenotypes. Our study revealed the complex ATP7B mutation patterns in WD patients and the applicability of a yeast model system to the evaluation of the functional consequences of ATP7B variants, which is essential for WD cases that are difficult to interpret. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app