Add like
Add dislike
Add to saved papers

Mesopore-Induced Ultrafast Na + -Storage in T-Nb 2 O 5 /Carbon Nanofiber Films toward Flexible High-Power Na-Ion Capacitors.

Small 2019 January 31
Hybrid Na-ion capacitors (NICs) are receiving considerable interest because they combine the merits of both batteries and supercapacitors and because of the low-cost of sodium resources. However, further large-scale deployment of NICs is impeded by the sluggish diffusion of Na+ in the anode. To achieve rapid redox kinetics, herein the controlled fabrication of mesoporous orthorhombic-Nb2 O5 (T-Nb2 O5 )/carbon nanofiber (CNF) networks is demonstrated via in situ SiO2 -etching. The as-obtained mesoporous T-Nb2 O5 (m-Nb2 O5 )/CNF membranes are mechanically flexible without using any additives, binders, or current collectors. The in situ formed mesopores can efficiently increase Na+ -storage performances of the m-Nb2 O5 /CNF electrode, such as excellent rate capability (up to 150 C) and outstanding cyclability (94% retention after 10 000 cycles at 100 C). A flexible NIC device based on the m-Nb2 O5 /CNF anode and the graphene framework (GF)/mesoporous carbon nanofiber (mCNF) cathode, is further constructed, and delivers an ultrahigh power density of 60 kW kg-1 at 55 Wh kg-1 (based on the total weight of m-Nb2 O5 /CNF and GF/mCNF). More importantly, owing to the free-standing flexible electrode configuration, the m-Nb2 O5 /CNF//GF/mCNF NIC exhibits high volumetric energy and power densities (11.2 mWh cm-3 , 5.4 W cm-3 ) based on the full device, which holds great promise in a wide variety of flexible electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app