Add like
Add dislike
Add to saved papers

Computational Investigation on Electrostatic Loop Mutants Instigating Destabilization and Aggregation on Human SOD1 Protein Causing Amyotrophic Lateral Sclerosis.

Protein Journal 2019 January 31
Mutations in the gene encoding Cu/Zn Superoxide Dismutase 1 (SOD1) protein are contemplated to be a protruding reason for Amyotrophic lateral sclerosis (ALS), which leads towards protein aggregation, misfolding and destabilization. Thus, we investigated the systematic action of entire mutations reported on electrostatic loop of SOD1 protein through thermodynamical and discrete molecular dynamics (DMD) studies. Accordingly, we analyzed the outcomes distinctly for screening the mutant structures having both, deleterious and destabilizing effect. Progressively, the impacts of those mutations on SOD1 were studied using DMD program. Surprisingly, our results predicted that the mutants viz., L126S, N139H and G141A to be the most destabilizing, misfolded and disease-causing compared to other mutants. Besides, the outcomes from secondary structural propensities and free energy landscapes, together assertively suggested that L126S, N139H and G141A tend to increase the formation of aggregates in SOD1 relative to other mutants. Hence, this study could provide an insight into the sprouting neurodegenerative disorder distressing the humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app