Add like
Add dislike
Add to saved papers

Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss.

Small molecules loaded into biological materials present a promising strategy for stimulating endogenous repair mechanisms for in situ skin regeneration. Lithium can modulate various biologic processes, promoting proliferation, angiogenesis, and decreasing inflammation. However, its role in skin repair is rarely reported. In this study, we loaded lithium chloride (LiCl) into the chitosan (CHI) hydrogel and develop a sterile and biocompatible sponge scaffold through freeze-drying. In-vitro assessment demonstrated that the CHI-LiCl composite scaffolds (CLiS) possessed favorable cytocompatibility, swelling and biodegradation. We created full-thickness skin wounds in male C57BL/c mice to evaluate the healing capacity of CLiS. Compared with the wounds of control and CHI scaffold (CS) groups, the wounds in the CLiS-treated group showed reduced inflammation, improved angiogenesis, accelerated re-epithelialization, sustained high expression of β-catenin with a small amount of regenerated hair follicles. Therefore, CLiS may be a promising therapeutic dressing for skin wound repair and regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app