Add like
Add dislike
Add to saved papers

Evidence for skeletal muscle fiber type-specific expressions of mechanosensors.

Mechanosensors govern muscle tissue integrity and constitute a subcellular structure known as costameres. Costameres physically link the muscle extracellular matrix to contractile and signaling 'hubs' inside muscle fibers mainly via integrins and are localized beneath sarcolemmas of muscle fibers. Costameres are the main mechanosensors converting mechanical cues into biological events. However, the fiber type-specific costamere architecture in muscles is unexplored. We hypothesized that fiber types differ in the expression of genes coding for costamere components. By coupling laser microdissection to a multiplex tandem qPCR approach, we demonstrate that type 1 and type 2 fibers indeed show substantial differences in their mechanosensor complexes. We confirmed these data by fiber type population-specific protein analysis and confocal microscopy-based localization studies. We further show that knockdown of the costamere gene integrin-linked kinase (Ilk) in muscle precursor cells results in significantly increased slow-myosin-coding Myh7 gene, while the fast-myosin-coding genes Myh1, Myh2, and Myh4 are downregulated. In parallel, protein synthesis-enhancing signaling molecules (p-mTORSer2448 , p < 0.05; p-P70S6KThr389 , tendency with p < 0.1) were reduced upon Ilk knockdown. However, overexpression of slow type-inducing NFATc1 in muscle precursor cells did not change Ilk or other costamere gene expressions. In addition, we demonstrate fiber type-specific costamere gene regulation upon mechanical loading and unloading conditions. Our data imply that costamere genes, such as Ilk, are involved in the control of muscle fiber characteristics. Further, they identify costameres as muscle fiber type-specific loading management 'hubs' and may explain adaptation differences of muscle fiber types to mechanical (un)loading.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app