Add like
Add dislike
Add to saved papers

Arbidol and other Low Molecular Weight Drugs That Inhibit Lassa and Ebola Viruses.

Journal of Virology 2019 January 31
Antiviral therapies that impede virus entry are attractive because they act on the first phase of the infectious cycle. Drugs that target pathways common to multiple viruses are particularly desirable when laboratory-based viral identification may be challenging, e.g. in an outbreak setting. We are interested in identifying drugs that block both Ebola virus (EBOV) and Lassa virus (LASV), two unrelated but highly pathogenic hemorrhagic fever viruses that have caused outbreaks in similar regions in Africa and share features of virus entry: use of cell surface attachment factors, macropinocytosis, endosomal receptors and low pH to trigger fusion in late endosomes. Towards this goal, we directly compared the potency of eight drugs known to block EBOV entry with their potency as inhibitors of LASV entry. Five drugs (amodiaquine, apilimod, arbidol, niclosamide, and zoniporide) showed roughly equivalent inhibition of LASV and EBOV glycoprotein (GP)-bearing pseudoviruses; three (clomiphene, sertraline and toremifene) were more potent against EBOV. We then focused on arbidol, which is licensed abroad as an anti-influenza drug and exhibits activity against a diverse array of clinically relevant viruses. We found that arbidol inhibits infection by authentic LASV, inhibits LASV GP-mediated cell-cell fusion and virus-cell fusion and, reminiscent of its activity on influenza hemagglutinin, stabilizes LASV GP to low pH exposure. Our findings suggest that arbidol inhibits LASV fusion, which may partly involve blocking conformational changes in LASV GP. We discuss our findings in terms of the potential to develop a drug cocktail that could inhibit both LASV and EBOV. IMPORTANCE Lassa and Ebola viruses continue to cause severe outbreaks in humans, yet there are only limited therapeutic options to treat the deadly hemorrhagic fever diseases they cause. Because of overlapping geographic occurrences and similarities in mode of entry into cells, we seek a practical drug or drug cocktail that could be used to treat infections by both viruses. Towards this goal, we directly compared eight drugs, approved or in clinical testing, for their ability to block entry mediated by the glycoproteins of both viruses. We identified five drugs with approximately equal potency against both. Among these we investigated the modes of action of arbidol, a drug licensed abroad to treat influenza infections. We found, as shown for influenza, that arbidol blocks fusion mediated by the Lassa virus glycoprotein. Our findings encourage the development of a combination of approved drugs to treat both Lassa and Ebola virus diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app