Add like
Add dislike
Add to saved papers

Use of Visible-Near-Infrared (Vis-NIR) Spectroscopy to Detect Aflatoxin B 1 on Peanut Kernels.

Current methods for detecting aflatoxin contamination of agricultural and food commodities are generally based on wet chemical analyses, which are time-consuming, destructive to test samples, and require skilled personnel to perform, making them impossible for large-scale nondestructive screening and on-site detection. In this study, we utilized visible-near-infrared (Vis-NIR) spectroscopy over the spectral range of 400-2500 nm to detect contamination of commercial, shelled peanut kernels (runner type) with the predominant aflatoxin B1 (AFB1 ). The artificially contaminated samples were prepared by dropping known amounts of aflatoxin standard dissolved in 50:50 (v/v) methanol/water onto peanut kernel surface to achieve different contamination levels. The partial least squares discriminant analysis (PLS-DA) models established using the full spectra over different ranges achieved good prediction results. The best overall accuracy of 88.57% and 92.86% were obtained using the full spectra when taking 20 and 100 parts per billion (ppb), respectively, as the classification threshold. The random frog (RF) algorithm was used to find the optimal characteristic wavelengths for identifying the surface AFB1 -contamination of peanut kernels. Using the optimal spectral variables determined by the RF algorithm, the simplified RF-PLS-DA classification models were established. The better RF-PLS-DA models attained the overall accuracies of 90.00% and 94.29% with the 20 ppb and 100 ppb thresholds, respectively, which were improved compared to using the full spectral variables. Compared to using the full spectral variables, the employed spectral variables of the simplified RF-PLS-DA models were decreased by at least 94.82%. The present study demonstrated that the Vis-NIR spectroscopic technique combined with appropriate chemometric methods could be useful in identifying AFB1 contamination of peanut kernels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app