Add like
Add dislike
Add to saved papers

Computational phantom study of frozen melanoma imaging at 0.45 terahertz.

Bioelectromagnetics 2019 Februrary
Terahertz radiation (THz) is highly absorbed by liquid water. This creates the possibility of medical imaging on the basis of the water content difference between normal and diseased tissue. The effective penetration of THz is limited, however, to a tissue depth of 0.2-0.3 mm at body temperature. A unique feature of the 0.1-2.0 THz frequency is that there is a high disparity between liquid water absorption and ice absorption, with ice being 100 times more permeable to the radiation than liquid water. This results in 90% of the radiation surviving to 1.0 mm in ice, permitting the imaging of frozen tissues to a depth of 5.0 mm. This method is practical as an in vivo procedure before or during surgical excision. Finite difference time domain (FDTD) computational modeling of frozen normal skin and frozen melanoma was undertaken using tissue phantoms. The study suggests that sufficient contrast exists to differentiate normal frozen skin and melanoma on the basis of the difference of water content alone. When the melanin pigment in melanomas is modeled as a significant absorber of THz, the contrast changes. Based on the modeling, further exploration of the "THz-skin freeze" imaging technique is justified. In the modeling, the boundary between the frozen tissue and non-frozen tissue is shown to be strongly reflective. If the reflective properties of the boundary are substantiated, the "THz-skin freeze" technique will have applications in other areas of skin diagnostics and therapeutics. Bioelectromagnetics. 40:118-127, 2019. © 2019 Bioelectromagnetics Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app