Journal Article
Review
Add like
Add dislike
Add to saved papers

Mitochondria as emerging targets for therapies against T cell acute lymphoblastic leukemia.

Acute lymphoblastic leukemia (ALL) comprises a heterogeneous group of hematologic malignancies, arising from diverse genetic alterations in the early lymphocyte development. T-cell subtype of ALL (T-ALL) accounts for about 15% and 25% of ALL in children and adults, respectively. Being less frequent among ALL subtypes, T-ALL represents a high-risk factor for poor prognosis due to its aggressiveness and resistance to common antileukemic drugs. Mitochondria were widely explored recently as a target for anticancer treatment because they are involved in a metabolic reprogramming of a cancer cell and play key roles in reactive oxygen species generation, Ca2+ signaling, and cell death induction. Accordingly, a new class of anticancer compounds named mitocans has been developed, which target mitochondria at distinct crucial points to promote their dysfunction and subsequent cell death. The present review analyses the role of mitochondria in malignant reprogramming and emerging therapeutic strategies targeting mitochondria as an "Achilles' heel" in T-ALL, with an emphasis on BH3 mimetics, sequestering pro-survival BCL proteins and voltage-dependent anion channel (VDAC)1-directed drugs, which promote the suppression of aerobic glycolysis, VDAC1 closure, mitochondrial Ca2+ overload, stoppage of the oxidative phosphorylation, oxidative stress, and release of proapoptotic factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app