Add like
Add dislike
Add to saved papers

Bi-enzyme functionalized electro-chemically reduced transparent graphene oxide platform for triglyceride detection.

Biomaterials Science 2019 January 31
Recently, increased attention has been drawn to application of graphene and its derivatives for construction of biosensors, since they can be used to rapidly detect the presence of bio-analytes. Present paper establishes the preparation of a unique transducer which relies on toluidine blue (TB), absorbed by electrochemically reduced graphene oxide (ERGO) transparent thin film onto the surface of the indium tin-oxide (ITO) glass electrode. The proposed TB/ERGO/ITO electrode shows excellent reversible electro-chemical properties. The novel platform has been explored to fabricate a triglyceride (TG) biosensor via co-immobilizing of lipase (LIP) and glycerol dehydrogenase (GDH) onto TB/ERGO/ITO electrode surface. The fabricated bioelectrode (LIP-GDH/TB/ERGO/ITO) directly oxidizes glycerol (produced by catalytic hydrolysis of tributyrin acting as a model TG) in the presence of GDH. The developed bioelectrode replaces unstable biological irreversible redox mediators NAD+/NADH, involved in the triglyceride breakdown reaction. NADH causes fouling on the bioelectrode surface in bi-enzymatic estimation of TG and reduces the shelf-life of biosensor. Electrochemical response studies carried out using cyclic voltammetry reveal that the fabricated electrode can detect tributyrin in the range of 50-400 mg dL-1 with high sensitivity of 29 pA mg-1 dL, low response time of 12 s, long-term stability and a low apparent Michaelis-Menten constant (Kappm) of 0.18 mM, indicating high enzyme affinity of LIP-GDH/TB/ERGO/ITO bioelectrode towards tributyrin. Furthermore, this modified bioelectrode has been explored for estimation of TG with negligible interference in human serum samples. The proposed bi-enzymatic bioelectrode for TG analysis offers an efficient and novel interface for application of graphene and its derivatives in the field of bioelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app