Add like
Add dislike
Add to saved papers

Pros and cons of insulin administration on liver glucose metabolism in strength-trained healthy mice.

Non-diabetic individuals use hormones like insulin to improve muscle strength and performance. However, as insulin also leads the liver and the adipose tissue to an anabolic state, the purpose of this study was to investigate the effects of insulin on liver metabolism in trained non-diabetic Swiss mice. The mice were divided into four groups: sedentary treated with saline (SS) or insulin (SI) and trained treated with saline (TS) or insulin (TI). Training was made in a vertical stair, at 90% of the maximum load, three times per week. Insulin (0.3 U/kg body weight) or saline were given intraperitoneally five times per week. After eight weeks, tissue and blood were collected and in situ liver perfusion with glycerol+lactate or alanine+glutamine (4 mM each) was carried out. The trained animals increased their muscle strength (+100%) and decreased body weight gain (-11%), subcutaneous fat (-42%), mesenteric fat (-45%), and peritoneal adipocyte size (-33%) compared with the sedentary groups. Insulin prevented the adipose effects of training (TI). The gastrocnemius muscle had greater density of muscle fibers (+60%) and less connective tissue in the trained groups. Liver glycogen was increased by insulin (SI +40% and TI +117%), as well as liver basal glucose release (TI +40%). Lactate and pyruvate release were reduced to a half by training. The greater gluconeogenesis from alanine+glutamine induced by training (TS +50%) was reversed by insulin (TI). Insulin administration had no additional effect on muscle strength and reversed some of the lipolytic and gluconeogenic effects of the resistance training. Therefore, insulin administration does not complement training in improving liver glucose metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app