Add like
Add dislike
Add to saved papers

Toll-like receptors pathway in common variable immune deficiency (CVID) and X-linked agammaglobulinemia (XLA).

Common variable immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) are two major humoral immunodeficiencies, causing a high rate of early age mortality in children. In order to identifiy the possible factors involved in the pathogenesis of CVID and XLA, recent studies have focused on Toll-like receptors (TLRs) and demonstrate the defects in different TLR pathways in immune cells of CVID and XLA patients. Herein, we measured TLR-4 and TLR-9 RNA levels and consequently TNF-α and IFN-α production in peripheral blood mononuclear cells (PBMCs) of patients with CVID and XLA. Contrary to healthy individuals, TLR-9 expression was not significantly increased after ligand stimulation, whereas ligand-induced TLR-4 expression was not significantly different from that in healthy control PBMCs. Lipopolysaccharide (LPS)-stimulated TNF-α production was significantly reduced in patients compared to controls, whereas IFN-α production was increased in all groups after CpG stimulation without any significant inter-group difference. Our data suggest that defects in TLR-9 activated pathways may be a result of the decreased TLR-9 expression, although TLR-9 is not the only modulator of IFN-α production in these patients. On the other hand, impaired signaling in TLR-4 activated pathways which results in significant reduction in TNF-α production are not related to a defect in TLR-4 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app