Add like
Add dislike
Add to saved papers

Expiratory flow-limitation in mechanically ventilated patients: A risk for ventilator-induced lung injury?

Expiratory flow limitation (EFL), that is the inability of expiratory flow to increase in spite of an increase of the driving pressure, is a common and unrecognized occurrence during mechanical ventilation in a variety of intensive care unit conditions. Recent evidence suggests that the presence of EFL is associated with an increase in mortality, at least in acute respiratory distress syndrome (ARDS) patients, and in pulmonary complications in patients undergoing surgery. EFL is a major cause of intrinsic positive end-expiratory pressure (PEEPi), which in ARDS patients is heterogeneously distributed, with a consequent increase of ventilation/perfusion mismatch and reduction of arterial oxygenation. Airway collapse is frequently concomitant to the presence of EFL. When airways close and reopen during tidal ventilation, abnormally high stresses are generated that can damage the bronchiolar epithelium and uncouple small airways from the alveolar septa, possibly generating the small airways abnormalities detected at autopsy in ARDS. Finally, the high stresses and airway distortion generated downstream the choke points may contribute to parenchymal injury, but this possibility is still unproven. PEEP application can abolish EFL, decrease PEEPi heterogeneity, and limit recruitment/derecruitment. Whether increasing PEEP up to EFL disappearance is a useful criterion for PEEP titration can only be determined by future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app