Add like
Add dislike
Add to saved papers

Potential injurious effects of the fine particulate PM2.5 on the progression of atherosclerosis in apoE-deficient mice by activating platelets and leukocytes.

Introduction: Exposure to the fine particulate matter PM2.5 is strongly associated with atherosclerotic diseases, creating considerable public concern. Nevertheless, the mechanisms have not been fully elucidated. We exposed atherosclerosis-prone apoE-deficient mice to PM2.5 to begin investigating these mechanisms.

Material and methods: Thirty-two 8-week-old male apoE-/- mice were divided to two groups fed with high-fat diet: a control group instilled with 0.9% saline, and an experimental group instilled with PM2.5 (30 mg/kg/day) for 8 weeks. We measured PM2.5 in whole blood by the ICP-MS method, and lipids and inflammatory factors by standard methods. The whole descending arteries were stained with oil red O; Aortic roots were stained with Movat, Sirius Red and immunohistochemical stains for pathological analysis; Brachiocephalic arteries for scanning electron microscopy, the descending arteries for Q-PCR. Echocardiography was used to evaluate cardiac function.

Results: In PM2.5 group, we observed elevated heavy metal components, consistent with higher amounts of platelets in total blood. The PM2.5 group also had elevated serum inflammatory factor levels. Finally, the PM2.5 group showed larger atherosclerotic plaques ( p = 0.0231), higher numbers of lesion macrophages ( p = 0.0183), greater injury to endothelial layers with greater adherence of platelets and leukocytes, elevated inflammatory factor levels, the NAD(P)H oxidase subunits p22phox and p47phox ( p = 0.0079 and p = 0.0294), the M1/M2 associated markers IL-6, TNF-α ( p = 0.0291, p = 0.0286), iNOS, IL-12 ( p = 0.0122 and p = 0.0280) and arginase-1, and CD206 ( p = 0.0216 and p = 0.0317).

Conclusions: PM2.5 exposure activated circulating leukocytes, platelets and associated inflammatory factors, contributing to the progression of atherosclerosis in apoE-/- mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app