Add like
Add dislike
Add to saved papers

Stilbene glycoside protects osteoblasts against oxidative damage via Nrf2/HO-1 and NF-κB signaling pathways.

Introduction: Oxidative stress is currently proposed as a risk factor associated with the development and progression of osteoporosis. Here, the effect of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glycoside (THSG) on oxidative damage was investigated in an osteoblast-like MC3T3-E1 cell model.

Material and methods: In this study, MC3T3-E1 cells were treated with hydrogen peroxide (H2 O2 ) (100 µM) and THSG (20, 50 and 100 μM), and alkaline phosphatase (ALP). ROS and MDA levels were measured using specific kits. Meanwhile, cell viability and apoptosis were also assessed using MTT methods and flow cytometry, respectively. Then, expression levels of Nrf2 and its downstream targets were determined using real-time PCR and western blotting, as well as the apoptosis related factors, including Bax, Bcl-2, caspase-3, and caspase-9.

Results: Upon H2 O2 treatment, cell viability was significantly decreased, while THSG clearly attenuated this decrease in a dose-dependent manner. Compared with the negative control, H2 O2 significantly decreased ALP and increased the levels of MDA, ROS and apoptosis, while THSG markedly reversed these effects in a dose-dependent manner. Moreover, THSG was identified to reverse the elevation of caspase-3, caspase-9 and Bax and the reduction of Bcl-2 induced by H2 O2 . For the Nrf2 signaling pathway, THSG was also observed to attenuate the up-regulation of Nrf2, HO-1, and NQO1, and the down-regulation of NF-κB induced by H2 O2 .

Conclusions: THSG could significantly attenuate oxidative damage induced by H2 O2 via the Nrf2/NF-κB signaling pathway, providing new insights for treatments of osteoporosis induced by oxidative injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app