Add like
Add dislike
Add to saved papers

Inhibition of LTP-induced translation by IL-1β reduces the level of newly synthesized proteins in hippocampal dendrites.

In rodent hippocampus, the inflammatory cytokine interleukin-1β (IL-1β) impairs memory and long-term potentiation (LTP), a major form of plasticity that depends on protein synthesis. A better understanding of the mechanisms by which IL-1β impairs LTP may help identify targets for preventing cognitive deterioration. We tested whether IL-1β inhibits protein synthesis in hippocampal neuron cultures following chemically-induced LTP (cLTP). Fluorescent-tagging using click-chemistry showed that IL-1β reduces the level of newly synthesized proteins in proximal dendrites of cLTP stimulated neurons. Relative to controls, in cLTP stimulated neurons IL-1β inhibited Akt/mTOR signaling, as well as the upregulation of GluA1, an AMPA receptor subunit, and LIMK1, a kinase that promotes actin polymerization. Notably, a novel TIR domain peptidomimetic (EM163) blocked both the activation of p38 and the suppression of cLTP-dependent protein synthesis by IL-1β. Our data support a model where IL-1β suppresses LTP directly in neurons by inhibiting mTOR-dependent translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app