Add like
Add dislike
Add to saved papers

An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus.

Symbiosis receptor-like kinase (SymRK) is a key protein mediating the legume-Rhizobium symbiosis. Our previous work has identified an MAP kinase kinase, SIP2, as a SymRK-interacting protein to positively regulate nodule organogenesis in Lotus japonicus, suggesting that an MAPK cascade might be involved in Rhizobium-legume symbiosis. In this study, LjMPK6 was identified as a phosphorylation target of SIP2. Stable transgenic L. japonicus with RNAi silencing of LjMPK6 decreased the numbers of nodule primordia (NP) and nodule, while plants overexpressing LjMPK6 increased the numbers of nodule, infection threads (ITs), and NP, indicating that LjMPK6 plays a positive role in nodulation. LjMPK6 could interact with a cytokinin receptor, LHK1 both in vivo and in vitro. LjMPK6 was shown to compete with LHP1 to bind to the receiver domain (RD) of LHK1and to downregulate the expression of two LjACS (1-aminocyclopropane-1-carboxylic acid synthase) genes and ethylene levels during nodulation. This study demonstrated an important role of LjMPK6 in regulation of nodule organogenesis and ethylene production in L. japonicus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app