Add like
Add dislike
Add to saved papers

Impacts of Solids Retention Time and Antibiotic Loading in Activated Sludge Systems on Secondary Effluent Water Quality and Microbial Community Structure.

Solids retention time (SRT) is one of the most important factors in designing and operating activated sludge systems for biological wastewater treatment. Longer SRTs have been shown to alter the structure and function of microbial communities, thereby leading to improved treatment efficacy with respect to bulk and trace organics, nutrient removal, and membrane fouling. Research has also shown that longer SRTs and/or higher influent antibiotic concentrations may lead to increased prevalence of antibiotic resistance. However, it is unclear whether elevated, yet subclinical, concentrations of antibiotics also impact the overall microbial community. The purpose of this study was to characterize changes in microbial community structure in a laboratory-scale activated sludge system as a function of SRT (2-20 days) and influent concentrations (1x-100x ambient) of ampicillin, sulfamethoxazole, tetracycline, trimethoprim, and vancomycin. Changes in microbial community structure were evaluated based on 16S rRNA gene sequencing, and microbial community function was evaluated based on changes in effluent water quality, including attenuation of bulk and trace organics. The results confirmed that longer SRTs-but not antibiotic loadings-had a significant impact on microbial community structure and effluent water quality. Therefore, moderate spikes in influent antibiotic concentrations are not expected to adversely impact biological wastewater treatment. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app