Add like
Add dislike
Add to saved papers

Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness.

While most cancer nanomedicine is designed to eliminate cancer, the nanomaterial per se can lead to the formation of micrometre-sized gaps in the blood vessel endothelial walls. Nanomaterials-induced endothelial leakiness (NanoEL) might favour intravasation of surviving cancer cells into the surrounding vasculature and subsequently extravasation, accelerating metastasis. Here, we show that nanoparticles induce endothelial leakiness through disruption of the VE-cadherin-VE-cadherin homophilic interactions at the adherens junction. We show that intravenously injected titanium dioxide, silica and gold nanoparticles significantly accelerate both intravasation and extravasation of breast cancer cells in animal models, increasing the extent of existing metastasis and promoting the appearance of new metastatic sites. Our results add to the understanding of the behaviour of nanoparticles in complex biological systems. The potential for NanoEL needs to be taken into consideration when designing future nanomedicines, especially nanomedicine to treat cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app