Add like
Add dislike
Add to saved papers

A cryogenic spin-torque memory element with precessional magnetization dynamics.

Scientific Reports 2019 January 29
We present a study of precessional magnetization switching in orthogonal spin-torque spin-valve devices at low temperatures. The samples consist of a spin-polarizing layer that is magnetized out-of-the film plane and an in-plane magnetized free and reference magnetic layer separated by non-magnetic metallic layers. We find coherent oscillations in the switching probability, characterized by high speed switching (~200 ps), error rates as low as 10-5 and decoherence effects at longer timescales (~1 ns). Our study, which is conducted over a wide range of parameter space (pulse amplitude and duration) with deep statistics, demonstrates that the switching dynamics are likely dominated by the action of the out-of-plane spin polarization, in contrast to in-plane spin-torque from the reference layer, as has been the case in most previous studies. Our results demonstrate that precessional spin-torque devices are well suited to a cryogenic environment, while at room temperature they have so far not exhibited coherent or reliable switching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app