Add like
Add dislike
Add to saved papers

Cancer cell-derived immunoglobulin G activates platelets by binding to platelet FcγRIIa.

Cell Death & Disease 2019 January 29
Tumor-associated thrombosis is the second leading risk factor for cancer patient death, and platelets activity is abnormal in cancer patients. Discovering the mechanism of platelet activation and providing effective targets for therapy are urgently needed. Cancer cell- derived IgG has been reported to regulate development of tumors. However, studies on the functions of cancer cell-derived IgG are quite limited. Here we investigated the potential role of cancer cell-derived IgG in platelet activation. We detected the expression of CD62P on platelets by flow cytometry and analyzed platelet function by platelets aggregation and ATP release. The content of IgG in cancer cell supernatants was detected by enzyme-linked immune sorbent assay. The distribution of cancer-derived IgG in cancer cells was analyzed by immunofluorescence assay. Western blot was performed to quantify the relative expression of FcγRIIa, syk, PLCγ2. The interaction between cancer cell-derived IgG and platelet FcγRIIa was analyzed by co-immunoprecipitation. The results showed that higher levels of CD62P were observed in cancer patients' platelets compared with that of healthy volunteers. Cancer cell culture supernatants increased platelet CD62P and PAC-1 expression, sensitive platelet aggregation and ATP release in response to agonists, while blocking FcγRIIa or knocking down IgG reduced the activation of platelets. Coimmunoprecipitation results showed that cancer cell-derived IgG interacted directly with platelet FcγRIIa. In addition, platelet FcγRIIa was highly expressed in liver cancer patients. In summary, cancer cell-derived IgG interacted directly with FcγRIIa and activated platelets; targeting this interaction may be an approach to prevent and treat tumor-associated thrombosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app