JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Nanomaterials as potential and versatile platform for next generation tissue engineering applications.

Tissue engineering (TE) is an emerging field where alternate/artificial tissues or organ substitutes are implanted to mimic the functionality of damaged or injured tissues. Earlier efforts were made to develop natural, synthetic, or semisynthetic materials for skin equivalents to treat burns or skin wounds. Nowadays, many more tissues like bone, cardiac, cartilage, heart, liver, cornea, blood vessels, and so forth are being engineered using 3-D biomaterial constructs or scaffolds that could deliver active molecules such as peptides or growth factors. Nanomaterials (NMs) due to their unique mechanical, electrical, and optical properties possess significant opportunities in TE applications. Traditional TE scaffolds were based on hydrolytically degradable macroporous materials, whereas current approaches emphasize on controlling cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix. This review article gives a comprehensive outlook of different organ specific NMs which are being used for diversified TE applications. Varieties of NMs are known to serve as biological alternatives to repair or replace a portion or whole of the nonfunctional or damaged tissue. NMs may promote greater amounts of specific interactions stimulated at the cellular level, ultimately leading to more efficient new tissue formation. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res B Part B, 2019.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app