Add like
Add dislike
Add to saved papers

Classification of gait patterns between patients with Parkinson's disease and healthy controls using phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks.

Parkinson's disease (PD) is a common neurodegenerative disorder that affects human's quality of life, especially leading to locomotor deficits such as postural instability and gait disturbances. Gait signal is one of the best features to characterize and detect movement disorders caused by a malfunction in parts of the brain and nervous system of the patients with PD. Various classification approaches using spatiotemporal gait variables have been presented earlier to classify Parkinson's gait. In this study we propose a novel method for gait pattern classification between patients with PD and healthy controls, based upon phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks. First, vertical ground reaction forces (GRFs) at specific positions of human feet are captured and then phase space is reconstructed. The properties associated with the gait system dynamics are preserved in the reconstructed phase space. Three-dimensional (3D) PSR together with Euclidean distance (ED) has been used. These measured parameters demonstrate significant difference in gait dynamics between the two groups and have been utilized to form a reference variable set. Second, reference variables are decomposed into Intrinsic Mode Functions (IMFs) using EMD, and the third IMFs are extracted and served as gait features. Third, neural networks are then used as the classifier to distinguish between patients with PD and healthy controls based on the difference of gait dynamics preserved in the gait features between the two groups. Finally, experiments are carried out on 93 PD patients and 73 healthy subjects to assess the effectiveness of the proposed method. By using 2-fold, 10-fold and leave-one-out cross-validation styles, the correct classification rates are reported to be 91.46%, 96.99% and 98.80%, respectively. Compared with other state-of-the-art methods, the results demonstrate superior performance and the proposed method can serve as a potential candidate for the automatic and non-invasive classification between patients with PD and healthy subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app