Add like
Add dislike
Add to saved papers

Stiffness distribution in the ablated zone after radiofrequency ablation for liver: An ex-vivo study with a tissue elastometer.

OBJECTIVE: To investigate the stiffness distribution in the ablated zone after radiofrequency ablation (RFA), we used a device called tissue elastometer based on gross liver samples.

MATERIALS: AND METHODS: Twelve freshly excised porcine livers were subject to RFA under a same setup to form elliptic ablated samples. Each sample was cut open for gross examination, and then the surface of the section plane was sliced into one piece for Young's modulus test using the tissue elastometer. Five test points along the long- and short-axis on each piece were selected to evaluate stiffness distribution respectively. Among them, four points distributed equidistantly from center to boundary in the ablated zone and one was in the unablated zone.

RESULTS: In the ablated zone, we found the Young's moduli were significantly different among the four test points both in long- (F = 99.04, p <0.001) and short-axis (F = 79.47, p <0.001) directions. The Young's modulus showed a downtrend in each direction, and was linearly related to the distance from the center to the test point (for long axis, R2 = 0.968; for short axis, R2 = 0.984, both p <0.001). A more significant downtrend was observed in short-axis direction. The Young's moduli gained from the inner edge of ablated zone were comparable and significantly higher than those from the outer edge for both directions. The maximum value of 24.71kPa for Young's modulus was the appropriate threshold to ensure the tissues were necrotic completely.

CONCLUSION: The stiffness inside the ablated zone represented a radial distribution with downtrend, following a linear law. The stiffness at the inner edge of ablated zone is stable and significantly higher than that at the outer edge. The maximum value of 24.71 kPa close to the inner edge of Wz may be used as the standard of complete ablation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app