Add like
Add dislike
Add to saved papers

Tuning the Ionicity of Stable Metal-Organic Frameworks through Ionic Linker Installation.

The predictable topologies and designable structures of metal-organic frameworks (MOFs) are the most important advantages for this emerging crystalline material compared to traditional porous materials. However, pore-environment engineering in MOF materials is still a huge challenge when it comes to the growing requirements of expanded applications. A useful method for the regulation of pore-environments, linker installation, has been developed and applied to a series of microporous MOFs. Herein, employing PCN-700 and PCN-608 as platforms, ionic linker installation was successfully implemented in both microporous and mesoporous Zr-based MOFs to afford a series of ionic frameworks. Selective ionic dye capture results support the ionic nature of these MOFs. The mesopores in PCN-608 are able to survive after installation of the ionic linkers, which is useful for ion exchange and further catalysis. To illustrate this, Ru(bpy)32+, a commonly used photoactive cation, was encapsulated into the anionic mesoporous PCN-608-SBDC via ion exchange. Photocatalytic activity of Ru(bpy)3@PCN-608-SBDC was examined by aza-Henry reactions, which show good catalytic performance over three catalytic cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app