Add like
Add dislike
Add to saved papers

Rapid and Efficient Coacervate Extraction of Cationic Industrial Dyes from Wastewater.

Effluent wastewater containing dyes from textile, paint, and various other industrial wastes have long posed environmental damage. Functional nanomaterials offer new opportunities to treat these effluent wastes in an unprecedentedly rapid and efficient fashion due to their large surface area-to-volume ratio. In this work, we explore a new approach of wastewater treatment using macroionic coacervate complexes formed with zwitterionic polyampholytes and anionic inorganic polyoxometalate (POM) nanoclusters to extract methylene blue (MB) dye as well as other cationic industrial dyes from model wastewater. Biphasic organic-inorganic macroion complexes are designed to produce a small volume of coacervate adsorbents of high density and viscoelasticity in contrast to a large volume of supernatant solution for rapid and efficient dye removal. Efficiency of coacervate extraction is characterized by the adsorption isotherm and maximum MB uptake capacity against the concentrations of polyampholyte, POM, and LiCl salt using UV-vis spectrophotometry to optimize the coacervate formation conditions. Our macroionic coacervate complexes could reach nearly 99% removal efficiency for the model wastewater samples of varied MB concentration in less than one minute. The extraction capacity up to approximately 400 mg/g far surpasses the dye extraction efficiency of widely used activated carbon adsorbents. We also explore the regeneration of coacervate complexes containing high concentration of extracted MB by a simple Fenton oxidation process to bleach coacervate complexes for repeated POM usage, which shows similar MB extraction efficiency after regeneration. Hence, coacervate extraction based upon spontaneous liquid-liquid separating complexation between polyzwitterions and POMs is demonstrated as a rapid, efficient, and sustainable method for industrial dye wastewater treatment. In perspective, coacervate extraction could advantageously possess dual processing options in separation industry through either membrane fabrication or use directly in mixer-settlers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app