Add like
Add dislike
Add to saved papers

Dual-Propeller Cavopulmonary Pump for Assisting Patients with Hypoplastic Right Ventricle.

Various congenital heart defects (CHDs) are characterized by the existence of a single functional ventricle, which perfuses both the systemic and pulmonary circulation. A three-stage palliation procedure, including the final Fontan completion, is often adopted by surgeons to treat patients with such CHDs. The completion Fontan involves the creation of a total cavopulmonary connection (TCPC), commonly accomplished with an extracardiac conduit. This TCPC results in nonphysiologic flow conditions that can lead to systemic venous hypertension, reduced cardiac output, and ultimately the need for heart transplantation. A modest pressure rise of 5-6 mm Hg could correct the abnormal flow dynamics in these patients. To achieve this, we propose a novel conceptual design of a dual-propeller pump inside a flared TCPC. The TCPC dual-propeller conjunction was examined for hydraulic performance, blood flow pattern, and potential for hemolysis inside the TCPC using computational fluid dynamics (CFD). The effect of axial distance between the two propellers on the blood flow interference and energy loss was studied to determine the optimal separation distance. Both the inferior vena cava (IVC) and superior vena cava (SVC) propellers provided a pressure rise of 1-20 mm Hg at flow rates ranging from 0.4 to 7 lpm while rotating at speeds of 6,000-12,000 rpm. Larger separation distance provided favorable performance in terms of flow interference, energy loss, and blood damage potential. The ability of a dual-propeller micropump to provide the required pressure rise would help to augment the cavopulmonary flow and mimic flows seen in normal biventricular circulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app