Add like
Add dislike
Add to saved papers

Magnetic Semiconductor Gd-Doping CuS Nanoparticles as Activatable Nanoprobes for Bimodal Imaging and Targeted Photothermal Therapy of Gastric Tumors.

Nano Letters 2019 January 29
Targeted delivery of enzyme-activatable probes into cancer cells to facilitate accurate imaging and on-demand photothermal therapy (PTT) of cancers with high spatiotemporal precision promises to advance cancer diagnosis and therapy. Here, we report a tumor-targeted and matrix metalloprotease-2 (MMP-2)-activatable nanoprobe (T-MAN) formed by covalent modification of Gd-doping CuS micellar nanoparticles with cRGD and an MMP-2-cleavable fluorescent substrate. T-MAN displays a high r1 relaxivity (~60.0 mM-1s-1 per Gd3+ at 1 T) and a large near-infrared (NIR) fluorescence turn-on ratio (~185-fold) in response to MMP-2, allowing high-spatial-resolution magnetic resonance imaging (MRI) and low-background fluorescence imaging of gastric tumors as well as lymph node (LN) metastasis in living mice. Moreover, T-MAN has a high photothermal conversion efficiency (PCE, ~70.1%) under 808 nm laser irradiation, endowing it with the ability to efficiently generate heat to kill tumor cells. We demonstrate that T-MAN can accumulate preferentially in gastric tumors (~23.4% ID%/g at 12 h) after intravenous injection into mice, creating opportunities for fluorescence/MR bimodal imaging-guided PTT of subcutaneous and metastatic gastric tumors. For the first time, accurate detection and laser irradiation-initiated photothermal ablation of orthotopic gastric tumors in intraoperative mice was also achieved. This study highlights the versatility of using a combination of dual biomarker recognition (i.e., αvβ3 and MMP-2) and dual modality imaging (i.e., MRI and NIR fluorescence) to design tumor-targeting and activatable nanoprobes with improved selectivity for cancer theranostics in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app