Add like
Add dislike
Add to saved papers

Exploration of Nano-Saturns: A Spectacular Sphere-Ring Supramolecular System.

Saturn-like systems consisting of nanoscale rings and spheres are fascinating motifs in supramolecular chemistry. Several ring molecules are known to include spherical molecules at the center of the cavity via noncovalent attractive interactions. In this minireview, we generalize the molecular design, the structural features, and the supramolecular chemistry of such "nano-Saturns", which consist of monocyclic rings and fullerene spheres (mainly C60), on the basis of previous experimental and theoretical studies. Ring molecules are classified into three types (loop, belt, and disk) according to their shapes and possible interactions. Whereas typical belt-shaped rings tend to form tight complexes due to the wide contact area via π-π interactions, flat disk-shaped rings generally form weak complexes due to the narrow contact area mainly via CH-π interactions. In spite of the small association energies, disk-shaped rings are attractive because such rings can mimic the planet Saturn precisely as exemplified by an anthracene cyclic hexamer-C60 complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app